PERGAMON

Available online at www.sciencedirect.com

sclzncs@mnsc-m

International Journal of Heat and Mass Transfer 46 (2003) 4335-4343

International Journal of

I"EAT and MASS
TRANSFER

www.elsevier.com/locate/ijhmt

Axial solids mixing in a circulating fluidized bed
Yu.S. Teplitsky *, V.A. Borodulya, E.F. Nogotov

A.V. Luikov Heat and Mass Transfer Institute, Minsk, Belarus
Received 24 September 2002

Abstract

A phenomenological model of axial solids mixing in a circulating fluidized bed is formulated. The model allows for
main specific features of the process: ascending motion of particles in the core zone and their descending motion in the
annular zone (inner circulation of solids); substantial changes of particle concentration, sizes of core and annular zones
over the bed height; net circulation of solids and the effect of the bottom bed on the process. The validity of initial
postulates is confirmed by comparison of calculated and experimental curves of mixing.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

At present the technology of a circulating fluidized
bed (CFB) is widely used in industry and power engi-
neering [1,2]. Due to comparatively small time of re-
search, main regularities of heat and mass transfer in
CFB have not been studied adequately which makes
development and designing of new large-scale appara-
tuses with CFB difficult. This refers, to a full extent, to
solids mixing the studies of which are of practical im-
portance for processes where continuous treatment of
particles (drying, firing, combustion, etc.) is imple-
mented or these particles gradually change their char-
acteristics and require replacement (catalyst poisoning).
Moreover, the character of solids mixing due to their
1000-fold higher bulk heat capacity, as compared with
gas, determines the mechanism of heat transfer and
leveling of temperatures in the apparatus.

By virtue of known [1] special features of CFB and its
inner hydrodynamics (substantial nonuniformity of
particle concentration both over the riser height and in
their horizontal cross-section, intense inner circulation
of solids, etc.), the process of solids mixing in this system
is rather complex for both experimental study and its
mathematical modeling. Now, the literature contains
only fragmentary data on the laws governing the process
which is insufficient for quantitatively, and often quali-
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tative, evaluation of the effect of different factors on the
intensity of solids mixing. The main difficulty of inves-
tigations is in correct interpretation of the obtained
experimental data which is directly connected with a
rational choice of the physical model of the process.
The simplest one-zone model with the only parame-
ter—axial solids dispersion coefficient—was used in [3]
for analysis of experimental solids residence time dis-
tributions in CFB with a diameter 0.152 and 0.305 m. A
two-parameter model, which involves the particle ve-
locity and axial solids dispersion coefficient, was used in
[4] for analysis of the experiments on mixing of particles
in CFB with a diameter 0.14 m. The authors do not give
recommendations for determination of particle velocity.
In [5], a more complex two-parameter two-dimensional
(along the coordinates » and x) model which allows for a
real structure of particle flows in CFB (ascending mo-
tion in the core zone and descending motion near the
riser walls) and radial solids dispersion. The model
considered a partial case of constant concentration
of particles over the riser height, which considerable
limited the range of its use. In [6], a rather complex
multiparameter circulation model of solids mixing is
suggested; the model directly allows for the two-zone
structure of CFB. A considerable drawback of the
model is in incorrect writing of diffusion and exchange
terms which do not disappear at large times when the
process of mixing ends and ¢; = ¢; = ¢4. It should be
noted that this refers, to the same measure, to the above-
mentioned models where the form of presentation of
diffusion terms follows from the Fick law for systems
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Nomenclature
A part of the horizontal cross-section of the AY At(u—u)/H
riser occupied by ascending particles (the A ta(u —u)/H
core zone) At, time in which the particles in the core zone
B part of the horizontal cross-section of the pass the part of the riser from x = Hy to
riser occupied by descending particles (an- x=H
nular zone) T At, + At recirculation period
¢y =c/p, and ¢ = ¢;/p, dimensionless concentra- T T(u—uw)/H
tions of marked particles in the core zone u superficial gas velocity
and the annular zone g single-particle terminal velocity

¢, ¢ concentrations of marked particles in the
core zone and the annular zone

uy, U velocities or particles in the core zone and
the annular zone

o initial ~dimensionless concentration of u} ur/(u—u), vy = ur/(u — uy),
marked particles in x = H, X vertical coordinate
¢ = Ac; + Be, mean dimensionless concentration of X' x/H
marked particles
Coo lim,_, ¢
D (ol p?) >/ B.) Greek symbols .
Do lim D(u; — 00,1 — 00, i, — 00) p. exchaqge cpefﬁcwnt .
D,,D,,E axial solids despersion coefficients By coefficient introduced in (11)
Fr. = (u—u)*/gH Froude number B B.p
g free-fall acceleration p B+p ﬁ 1
H riser height & poro's1.ty .
H, height of the bottom bed p1,p,  densities of the bed in the core and annular
H Ho/H zones .
Ji diffusion flow of marked particles P Ap, .—i— Bp, mean (over the horizontal cross-
J, net solids flow sect19n of the t_>ed) density of the bed
Js = Ji/ps(u — u,) dimensionless net solids flow Ps density of particles
l Bp,
p Ap, Subscripts
Pe; = (u—u,)/p,H Peclet numbers 1 core zone
Peq = (u—u)H/E 2 annular zone
Pe; = Pec/(l +0.82(uyuy / (uy + ”/2))Pec(1/x')) c circulation model (35)—(37)
r radial coordinate d diffusion in Eqgs. (44), (45), delay
t time b fluidized bed near the gas distributor (bot-
t =t(u—u)/H dimensionless time tom bed)
At recirculation time (time interval between r radial
escape of particles from the upper part of ] solids
the riser to entry to its base) t conditions of floating of an single particle.
with constant density. Since, as is known, CFB is a circulation of the solid phase (Fig. 1). The following
system where density changes substantially in both formulas are used for calculation of these velocities
horizontal ad vertical directions, the fact mentioned [7.8]
greatly restricts the applicability range of these models. _
w=u—u [7), (1)

2. Phenomenological solids mixing model uy = 0.1(u — u) B [8]. (2)
As is seen, velocities u; and u, are constant over the
bed height.

2. The existence of outer (net) circulation of solids,
which is produced by solids flow J; escaping from
the upper part of the riser and then coming back to
the bed base, is taken into account (Fig. 1).

The main assumptions which form the basis of the
model are the following:

1. Ascending particle motion with velocity u; in the cen-
tral part of the bed (core zone) and descending mo-
tion with velocity u, in the annular zone form inner
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Fig. 1. Model of axial solids mixing in CFB.

. In each horizontal cross-section of the riser there
holds the equality

JS :Aplul —szuz, (3)

which determines a value of the specific circulating
particle flow J; (constant over the bed height and
determining the intensity of net circulation of solids).
. Local concentrations of particles in core zone (p,)
and annular zone (p,) are linked by the correlation

p2 = npy, 4)

where n is the constant coefficient. By the data of [9],
n~2-3.

. A mean (over the horizontal cross-section of the ri-
ser) density of the bed p = 4Ap, + Bp, is variable over
the height and is described by an empirical formula
[10]:

ﬁ — .75()6/)—0.827

; Hy<x'<1. (5)

. Relative parts of the core zone (4) and the annular
zone (B) change with the height, here in any horizon-
tal cross-section of the bed

A+B=1 (6)

Formulas for calculation of 4 and B can be easily
obtained from (3)-(6):

u/ + (x/)O.SZ
A:"w+m;7@&“afm’ @)
1 2
;082
B = Z'll (x ) (8)

uy + iy — ()P (1 —n)’

for H' <x'<1.

7. In the lower part of the bed there exists a zone with
constant density and ideal mixing of particles—Dbot-
tom bed (Fig. 1). Its height is calculated by [11]

H, = 125F°87.". (9)

By the data of [12], bottom bed porosity weakly de-
pends on the velocity of gas and is a rather stable

quantity.
In [11], it is suggested to determine it by the formula
e = 1 — 0.33 Fr, %%, (10)

8. Particle exchange occurs between the core and annu-
lar zones. The exchange coefficient f, is taken to be
independent of the vertical coordinate x.

9. Dispersion transfer of marked particles with the coef-
ficients D, and D, takes place in the core and annular
zones, respectively, in addition to convective transfer.

10. Changes of the characteristics of CFB in horizontal
direction are neglected.

We first write the continuity equations for solids in
the core zone and annular zones

0dp 04p

6t1 uy axlz—Aﬁlpl» (11)
0Bp 0Bp

Btz_uz axzzAﬁ1p1~ (12)

The quantity 4f,p, ! allows for (within the frame-
work of the one-dimensional model) the existence of a
radial particle flow J; from the core zone to the annular
zone (Fig. 2), which provides the experimentally ob-
served decrease of densities p, and p, with a height at
practically constant velocities u#; and u,.

Having summed (11) and (12), with account for (3)
we obtain the continuity equation for the flow of outer
circulation of solids

"In this case, a specific form of this quantity is not of
principal value, since in what follows we use only the equality
AP, p, = —uy(04p, /Ox) which follows from (11) under station-
ary conditions.
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Fig. 2. Schematic of particle flows in CFB.

ap aJ;

o += . =0, (13)

which leads to constancy of J; under stationary condi-
tions.

Taking the above assumptions into account, we for-
mulate the system of equations which describe axial
solids mixing in the CFB riser:

the core zone

0A4p,c 04p,c 0 Ocy
o U T <A”1D'a )*ﬁ* (2 —er)

—Ap, ey, (14)

the annular zone

0Bp,cy 0Bpyc; 0 0c,
o Moy T ap (Bl ) Rl —e)
+Ap,Bicr. (15)

The form of the diffusion terms in (14) and (15) corre-
sponds to the Fick law in medium with a variable den-
sity [13]

]l:—p1D1%7 12172 (16)

The contribution of these terms is likely to be estimated
by the quantity 1/Pe = D/(u—u)H, where D is the
coefficient of the order of D; and D,. With account for
the fact that D = 103 m?/s [1, p. 345], we have the es-

timate for 1/Pe: 1/Pe ~ 0.2 x 10 at H =10 m and
u — u, = 5 m/s which indicates that the share of diffusion
terms in (14) and (15) is negligibly small. Taking this fact
and the continuity equations (11) and (12) into account,
we can represent the system of equations (14) and (15) as

0cy

Ap) — o +Ap1u1 fﬁ plex —ci1), (17)
0cy 0cy

Bpy,— o — Bpyus — o = (B.p+4pBi)(c1 — ). (18)

Despite the seeming simplicity, the system of equations
(17), (18) has a rich essence and reflects virtually all
important aspects of axial solids mixing in CFB.

For further analysis we introduce the notation:
p=Api; [ =Bp,; p=B.p; f=p+Ap, . Eliminating
in turn ¢; and ¢, from (17) and (18), we reduce these
equations to the form

pPB 0 Oc pB
(-t ()% (7

S S (2)) % pTe P T
N\ g R AT
14 azcli
ﬁuﬂ/tz axz —0, (19)
1B 0 (1Y) oc
(”;ﬁ“"a(ﬁ )T(“ﬁ”ﬁ”l
w2 (L)) 8 L0 l(,, u)62°2
2 ¢ I3 x g o f ! 2 drox
[ 626'2
—?ulug ax2 =0. (20)

Egs. (19) and (20) are the second-order hyperbolic
equations. We consider the important partial cases.

1. Large times. As is shown in [14], when ¢ > 10/, it is
admissible to neglect the terms with 9*/d7 and
0 /dtdx in the equations of type (19) and (20).
With this in mind, we obtain

1 0 aCl 0 6c1
(1= 2 2 om) S (4~ 200 2

o 6201

10/p dc, o (P dca
(“u—za(ﬁpD)) a (J ‘a(ﬁw))a
_ﬁ 626'2

where D = (pl/p?)(uiuz/B,). This coefficient can be
treated as the coefficient of axial “Taylor” diffusion
which exists in the systems with a nonuniform field of
axial velocities and exchange of substance in a radial
direction [15]. Egs. (21) and (22) are the parabolic
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equations of nonstationary convective diffusion with
variable coefficients of dispersion D and (/f)D in
the core and the annular zones, respectively.

2. Stationary conditions of mixing. These conditions are
realized, as is known, at constant supply and removal
of marked particles. The case is described by the fol-
lowing equations:

0 6c1 o azcl
(-5 02)) S =055 (23)

d (P de; B e
w327 =

3. An infinitely large coefficient of exchange f3,, at which
any difference between the phases disappears. Here
two cases are possible:

(@) u,up — oo, then limg o, plujus/p*B, = Doy < 00.
The system of equations (19), (20) is reduced to the
only equation

dc 0 Ooc d%c
Pa T (Jra(pDoo)>a—po@, (25)

which is the equation of convective diffusion with a
variable coefficient of dispersion D, in the medium
with variable density p.

(b) uy,u; < oo, then D, = 0 and it follows from (25)

oc oc

Pt (26)
Eq. (26) describes convective transfer of marked
particles at a velocity J;/p.

4. The absence of exchange between the phases (f, = 0).
In this case, the phases are as in “quasi-isolated”” and
only one-sided transfer of marked particles from the
core zone to the annular zone by the flow J; occurs
(Fig. 2). The initial system (17) and (18) takes the
form

aCl 6(21 o

E-ﬁ-ulaf 07 (27)
dc Oc; p

a—;—uza—;i7ﬁ1(01 —Cz). (28)

Eqgs. (27) and (28) describe convective transfer of
marked particles upward with a velocity u; (the core
zone) and downward with a velocity u, (the annular
zone).

3. Numerical modeling of axial solids mixing in CFB

The system of equations (17) and (18) was used for
numerical modeling of mixing of marked particles in-
troduced at the initial instant of time to the bottom bed
(Fig. 1). Such introduction of marked particles is most

often used in experiments. The corresponding boundary-
value problem has the form

601 661 _ ﬁ
5 ula—p(cz C])7 (29)
662 662 B
TR AC ROl (30)

The initial and boundary conditions are:

¢1(0,x) = 2(0,x) =0, ¢1(0,Hy) = co,
x=H:ci=c=c x=H,: (31)

(a) t<T: pfbHo(acl/ﬁt) + pujc; — Zu2C2 = 0,
(b) t > T : ppHy(dcy /0t) + pujc; — luzcy
=Jc(t — At H). ?

We note that the boundary condition at x = H is the
consequence of the equation

puicy — luscy = Jic, (32)

which is the balance of marked particle flows at the riser
outlet provided that mixing of particles in the outlet
zone is good (Fig. 1). The quantities p and / which enter
into (29)—(31) are related to a mean density of the bed
p = p+ 1. Allowing for this fact, we can easily obtain
from (4), (7) and (8) the formulas for calculation of p
and /

A w4 ()%
p=p et (33)
A+ Bn u) +ubh
Bn up — (x)"%
/= =l 34
PavBn P uy + i) (34)

Using (33) and (34) we write the system of equations
(29)—(31) in a dimensionless form

oc;  , 0cy 1w+

§+ul§:1°_ecm(cz_cl)’ (35)
dc; 00 1 uj+uh
TR )

The initial and boundary conditions

C1(07xl) = CZ(Orxl) = 07

C](O,Hé) = Cp, (37)
co=c=c x=1,
x' =Hy:

2 It is assumed that all particles escaping from the riser again
reach CFB in time Az. The absence of recirculation is likely to
correspond the condition At = co (7' = o).
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der  uy + (Hp)"™

a) <T: mH—+2—"" y¢
(a) O or + uy +ub s
0.82
Ty, 2T
1 2
Oc;  uh+ (H’)O'82
/ !, / 2 0 /
(b) t>T: mHoﬁ Wulcl
= ()

0.82
pry uher = (Hy) “e(f — AL, 1).

The quantity m = pg,/p(H,) is calculated by the formula
m = 0.4 Fr7%7 which follows from (5), (9), and (10). As is
seen, the system of equations (35)—(37) involves only one
unknown parameter—the exchange coefficient f, which
enters into the numbers Pe, and Pe,.

The boundary-value problem (35)—(37) was solved
numerically by the finite-difference method. An implicit
scheme of first order of accuracy was used. The com-
putational region H;<x' <1 was divided to 1000 inter-
vals. Fig. 3 presents calculation of the concentration of
marked particles at the riser outlet (¢; = ¢, = ¢) at dif-
ferent values of Pe.. For simplicity, calculations are
made for the case Az = 0 (marked particles is instantly
carried from the outlet point of the riser to the point of
re-entry). The calculation for the case Pe, = 0 is given in
Appendix A. A stationary value of concentration ¢,, can
be easily calculated by the formula

€o

Coo = 1+575((H6)70.|8_1)7 (38)

which follows from the equation of material balance of
marked particles. Fig. 4 gives the comparison of the data
calculated at Af= oo and experimental data of [16]
where the quantities ¢; and ¢, were measured at different
points of the riser with a diameter 0.305 m. A value of f5,
obtained by the least-squares method is equal to 0.07
s~!. We note that the given mixing curves which corre-
spond to Pe. = 0 are calculated by the formula

c=c exp( — (H(,)’)nﬁ (¢ - té)) , (39)

which is the solution of equation

d
Pty + Je =0, (40)
dr
proceeding from the boundary condition (a) in (31) at
¢; = ¢; = ¢. According to Eq. (26) the time of particle
arrival at the given point of the riser is here determined
as

. :l /xpdx:ﬂ((x,)o.ls _ (H(/))O,IS)‘ (41)

Js H, U —u

0.4 Pe=0.001

031 0.01
0.2

o
0.1

0.8

0.64 Peg=

0.4

0.2

(b)

Fig. 3. Outlet curves of mixing for different values of Pe.
(m=1.208, H;=0.01, c, =0.144, ¢y =1, J, =50 kg/m’s,
u=06m/s, H=12 m).

As is seen from Fig. 4, the calculated mixing curves are
in good agreement with experimentally obtained values
of concentrations ¢; and ¢, [16] and allow correct de-
scription of qualitative differences of the functions ¢ (¢)
and c,(¢) which are observed in the experiment.

For comparison we considered a one-zone diffusion
model with a constant axial solids dispersion coefficient
E. The form of the equation is similar to (25):

dc 0 doc d%c
R () S ()

The initial and boundary conditions correspond to (31):

c(0,x) =0; ¢(0,Hy) = co;

dc
&:07 x:H(),

o 43)
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Fig. 4. Comparison of calculated mixing curves with experi-
mental data [16]. (a) ¥ = 0.55, (b) ¥’ =0.32, (c) ¥ = 0.75. (@)
Experimental points [16] (m = 1.6, Hj=0.074, ¢, =0.021,
J, = 147 kg/m?s, u = 4.57 m/s, H = 12.2 m).

oc Oc
(a) t<T: pfbHoa + Jsc — pEa—x:O7

dc 0
pfbHOa U — pESS = Jie(t — At H).

(b) t>T: o

Using the expression for p from (5), we write the system
of equations (42) and (43) in a dimensionless form

Oc 0.82 0.82 Oc 1 620
—= . 44
al‘/ + <( ) +Pedx,) ox' Ped a(x,)z ( )

The initial and boundary conditions are

c(0,x') =0; ¢(0,Hy) = cy,

, oc , , (45)
X :l, &:0, X :H():
/ ! ,aC 71,0.82 1 oc
<7 H, H) ¢c——— ;
(a) ¢ " Oat’+( o) e Pey Ox' =0
/ I, /a /082 1 aC
(b)y ¢>T" mHOa,+(H) P, o0

= (H)"®e(f — AL ).

Fig. 5 presents the numerically obtained solutions of
(44) and (45) for different values of Pey at the point
x' = 0.55. Tt follows from comparison of Figs. 4 and 5:

1. The diffusion model is capable of describing the ex-
perimental data only at sufficiently large times
(# = 1). At small times, the diffusion model, in con-
trast to circulation one, cannot even give qualitative
agreement with experimental data and describe differ-
ent forms of the mixing curves in the core and annu-
lar zones.

1 _ 5000
0.015 -

0.01 4

0.005 +

0.0 - d ; , :
00 05 1.0 15 20

Fig. 5. Mixing curves calculated by the diffusion model at
different values of the Pey number (x' = 0.55). (@) Experimental
data [16] for concentration c.
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2. The solutions of (44) and (45) at large Pey (small co-
efficients E) virtually coincide with the solutions of
(35)-(37) at small Pe. (large coefficients of exchange
p.). This corresponds to transition of Eq. (42) at
small £ to (26) and coincidence of the corresponding
boundary conditions.

4. Conclusions

A two-zone model of axial solids mixing in CFB is
formulated. The model allows for main special features
of the process and, as is shown, is capable of satisfactory
description the experimental mixing curves. The sim-
plicity and comprehensive substation of Egs. (17) and
(18) make it possible to effectively use them for practical
calculations.

Further investigations presuppose a detailed study of
the dependence of the most important parameter of the
model—the coefficient of exchange §,—on the geometric
(H, D) and hydrodynamic (Js, ) characteristics of CFB.

Appendix A. The response function at the point x' = 1 at
Pe. = 0 (Fig. 3)

A dimensionless time of arrival of particles at the
point x’ =1 (the delay time) #, is found from Eq. (41)

4:55@44%f“)23m. (A.1)

Since the situation at the point X’ = 1 exactly repeats the
situation x’ = Hj with delay #; = Ar, (at AY =0), the
form of the response function at the CFB outlet can be
easily obtained, with allowance for delay, from the so-
lutions of the equations which describe two versions of
the boundary condition at X’ = Hj in (37). Atc; =c; =¢
and A¢ = 0 they have the form

de
() 7<) mHé@

, Oc
(b) ¢ >1y: mH(g&

+c(H)"¥ =0, (A2)

+ C(Hé)O.SZ _ (H(;)O‘gzc(t/, 1)
(A.3)

The solution of Eq. (A.2) with the initial condition
c(ty) = ¢o = 1 has the form

c(t') = exp ( — (Hé’)nﬁ (¢ — t’d)) ) (A4)

The function (A.4) describes the shape of the mixing
curve at x’ =1 within the range of times 7} <¢ <2¢
when the effect of solids recirculation does not begin to
manifest itself. At larger times, one should use Eq. (A.3)
which allows for recirculation of particles. Within the

range of times 2#; <# <3} the form of the response
function follows from the solution of Eq. (A.3), which,
with account for (A.4) has the form

,dc

/1 —0.18
mH; o €)™ = () exp (_7( - 241)).
(A.5)

The role of the initial condition for (A.5) is played by the
relation

c(2t)) = exp( - %t&), (A.6)

which follows from (A.4) at ¢ = 2¢;. The solution of
(A.5) and (A.6) has the form

ety =y oy exp( L zt;))

+ exp( - (H(l”)nﬁ (¢ - té)) . (A7)

For the next period of time 37, < ¢ < 4¢; calculation of
the response functions follows from the solution of
equation

d 17)-018
iy 4 () = (1) <( )t -3
\—0.18
X exp< - % (== 3té)>
£7)-018
+exp< —%(z" - 21&))),

(A.8)

with the initial condition following from (A.7) at ¢ = 3¢,

£7)-018 1)-018
c(3t"1):7( Or)n téexp(—i( ) #

m

777)-018
+ exp ( - (O)Zt:,) (A.9)
m
The solution of (A.8) and (A.9) has the form

c(t’) = (<(H6)_ ' ) (¢ *231‘:1) + (H(/))_ . (t’ — 3té)

m m

1) ~018 17018
Xexp(—( Or)n A +( Or)n #

1018 o (H) 018
xexp(—( OZn té>+exp(—( (;7)1 )

X exp( — (H(;’)nﬁ (¢ - 3[&))
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Calculation of subsequent periods of time is similar. Fig.
3 shows the response function for Pe. = 0 constructed by
Egs. (A4), (A.7) and (A.10).
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